The learning problem - Outline
- Example of machine learning
- Components of Learning
- A simple model
- Types of learning
- Puzzle
Example: Predicting how a viewer will rate a movie
- 10% improvement = 1 million dollar prize, 这是机器学习的商业价值, 一点小小的调优, 可以更合理的分配资源, 提升效率, 得到巨大经济利益.
- The essence of machine learning:
- A pattern exists. 机器学习如果要成立, 模式/规律必须存在, 完全随机无学习可言
- We cannot pin it down mathematically. 人类无法找到数学规律, 需要借助计算机强大的计算能力, 和模式识别能力, 来帮助人类找到模型.
- We have data on it. 机器学习其实是从数据中学习, 或者转化成数字, 进行处理.
Movie rating - a solution
- viewer: like movies? / like action? / prefers blockbusters?… likes Tom Cruise?
- movie: comedy content / action content / blockbusters? … Tom Cruise in it?
- 结合 viewer 和 movie 的特征, 建立学习算法, 得到评价分数
Components of learning
- Formalization:
- Input: X (customer application)
- Output: y (good/bad customer?)
- Target function: f: X -> y (ideal credit approval formula)
- Data: $(x_1, y_1), (x_2, y_2), … , (x_n, y_n)$ (historical records)
- Hypothesis: g: X -> y (formula to be used)
- Solution components
- The 2 solution components of the learning problem:
- The Hypothesis Set
- The Learning Algorithm
- Together, they are referred to as the learning model.
A simple hypothesis set - the ‘perceptron’
- For input $X = (x_1, … , x_d)$ ‘attributes of a customer’
- Approve credit if $\sum_{i=1}^{d}w_ix_i$ > threshold,
- Deny credit if $\sum_{i=1}^{d}w_ix_i$ < threshold.
- This linear formula $h \in H$ can be written as
- h(x) = sign(($\sum_{i=1}^{d}w_ix_i$) - threshold)
Types of learning
Basic premise of learning
“using a set of observations to uncover an underlying process”
broad premise => many variations
- Supervised Learning 有监督学习, 有先验知识
- Unsupervised Learning 无监督学习, 聚类..
- Reinforcement Learning 增强学习, 玩游戏, 延迟反馈
Changelog
- 2018-02-26 创建